Using Artificial Intelligence to Generate de novo Thermally Stable Collagen Sequences

Chi-Hua Yu^{1,2}, Om Prakash Narayan³, Rachael Parker³, David Kaplan³ and Markus J. Buehler^{1*}

¹ Laboratory for Atomistic and Molecular Mechanics, MIT, ²Department of Engineering Science, NCKU ³Department of Biomedical Engineering, Tufts University; *mbuehler@MIT.EDU

Overview

Learning from sequences pattern

Silknet – Deep learning model

Machine learning (ML) on protein design

Our research group use ML to predict 2nd structure as well as design de novo proteins.

References

C.H. Yu and M. J. Buehler, Nano Futures (2019) C.H. Yu and M. J. Buehler, ACS Nano, (2019) Z Qin, M. J. Buehler et al; bioRxiv, 660639

Self-evolved design approach

Results

1.50

1.00

Future work

- Experimental synthesis collagen sequences for verification.
- Apply to function design

Acknowledgment

This work was supported by NIH, award number NIH U01 EB014976